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Abstract

Tensor and tensor networks are envisioned to have
great potential to advance machine learning tech-
nologies. Recent works show that tensor networks
provide powerful simulations of quantum machine
learning algorithms on classical computers. We
observe that tensor and tensor networks in ma-
chine learning exhibit a layered architecture that re-
sembles an hourglass. In this paper, we describe
a seven-layer architecture to characterize the role
of tensor and tensor networks in machine learn-
ing, point out current challenges and discuss re-
cent innovations. As a cornerstone data structure,
tensor and tensor networks lie at the waist of the
hourglass-shaped architecture, while the lower and
upper layers tend to see frequent innovations. We
expect tensor and tensor networks continue to serve
as an amplifier for computational intelligence, a
transformer for machine learning innovations, and
a propeller for AI industrialization.

1 Introduction
Why do conventional machine learning algorithms use vec-
tors and matrices, while deep learning algorithms and neural
networks mostly rely on tensors? A direct answer is that deep
learning usually involves hundreds, if not thousands, of fea-
tures.

Tensor networks, a contracted networks of factor tensors,
have arisen independently in several areas of science and en-
gineering. Such networks appear in the description of phys-
ical processes and an accompanying collection of numerical
techniques have elevated the use of tensor networks into a
variational model of machine learning. Tensor networks have
shown significant power in compactly representing deep neu-
ral networks [Novikov et al., 2015], and efficient training
and theoretical understanding of deep neural networks. More
potential tensor network technologies are rapidly emerg-
ing, such as approximating probability functions and prob-
abilistic graphical models [Stoudenmire and Schwab, 2016;
Han et al., 2018]. A merger of tensor network algorithms
with state-of-the-art approaches in deep learning is now tak-
ing place.

We observe that tensor and tensor networks in machine
learning exhibit a layered architecture that resembles an hour-
glass. Such an observation is analogy to the hourglass struc-
ture [Akhshabi and Dovrolis, 2011] of the Internet protocol
stack (known as TCP/IP) that successfully provides end-to-
end data communication by specifying how data should be
packetized, addressed, transmitted, routed, and received.

The three wagons for the success of machine learning are
• Big data: the past decade witnesses an exponential ex-

plosion of sensory data due to the great advances in sen-
sor manufacturing, leading to the debate More is more!
or More is less? [Baraniuk, 2011].
• Tensor data structure: As a cornerstone data structure,

tensor and tensor networks are envisioned to have great
potentials to promote the development and deployment
of machine learning technologies.
• Intelligent computing for computational intelligence!

Deep learning [LeCun et al., 2015] are computational
models with multiple processing layers that learn repre-
sentations of data with multiple levels of abstraction.

In this paper, we attempt to initiate a layered architecture
for tensor and tensor networks, which will benefit the devel-
opment of machine learning theory, AI chip manufacturing,
and AI applications. This seven-layer architecture resembles
an hourglass, namely, tensor and tensor networks lie at the
waist while the lower and upper layers tend to see frequent
innovations. The bottom layer is the hardware, the highest
layer is the AI applications and products. Further, we point
out current challenges and discuss recent innovations.

Such an hourglass-shaped layer architecture enjoys dis-
ciplinary advantages, including layer-wise standardization,
intra-layer modularity and inter-layer separability. The layer-
wise standardization encourages an eco-system for machine
learning research and industrialization. With the intra-layer
modularity, one can update a functional module without in-
terfering other modules. The inter-layer separability means
that the lower layer is transparent to the upper layer that calls
the APIs provided by the lower layer. We expect tensor and
tensor networks continue to serve as an amplifier for com-
putational intelligence, a transformer for machine learning
innovations, and a propeller for AI industrialization.

We aim to promote discussions (by a series of workshops
and academic events) among researchers investigating inno-



vative tensor network technologies from perspectives of fun-
damental theory and algorithms, novel approaches in machine
learning and deep neural networks, and variaour applications
in computer vision, biomedical image processing, natural lan-
guage processing, and many other related fields.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed hourglass architecture. Section
3 discussed key challenges and recent innovations. We con-
clude this paper in Section 4.

2 The Proposed Hourglass Architecture
We propose a seven-layer architecture for tensor and tensor
networks, which resembles an hourglass.

2.1 Layer 1: X Processing Unit
In the post Moor’s law era [Theis and Wong, 2017], the rise
of deep learning [LeCun et al., 2015] can be largely credited
to a new paradigm Intelligent computing for computational
intelligence! The impetus to AI computation is made-for-AI
chips/processors, called XPU, including GPUs, FPGAs, and
ASICs (NPUs).

There is an emergence of dedicated AI accelerator using
the ASIC (Application Specific Integrated Circuit) technol-
ogy, called NPU (neural processing unit). Of particular in-
terest are tensor-based NPUs, including Google TPU (tensor
processing unit) [Jouppi et al., 2017], tensor cores in NVIDIA
Volta/Turing Architecture, Intel Nervana neural network pro-
cessors (NNP), Tensor Computing Processor BM1684, Al-
ibaba Ali-NPU, Knupath Hermosa, Baidu XPU [Ouyang,
2017], the Huawei Ascend 910 using 32 DaVinci AI cores
[Liao et al., 2019b], etc.

2.2 Layer 2: BLAS and Automatic Differentiation
To fully utilize the computing power of hardware XPUs in
Layer 1, BLAS (Basic Linear Algebra Subprograms, or Basic
Tensor Algebra Subroutines BTAS) and AutoDiff (Automatic
differentiation) [Paszke et al., ] are “a knife and fork” for ef-
fective implementation of machine learning models.

• BLAS level 1 (1969): “vector-vector”;

• BLAS level 2 (1972): “matrix-vector”;

• BLAS level 3 (1980): “ matrix-matrix”;

• BLAS level 4 (Now?), “tensor-tensor”: tensor op-
erations include tensor (Kronecker) product, Khatri-
Rao product, Hadamard product, tensor contraction, t-
product or L-product [Liu and Wang, 2017], etc.

Such BLAS standards are implemented and optimized in
different programming languages. For example, numpy in
Python, cuBLAS and cuTensor in NVIDIA CUDA. Multilin-
ear is general-purpose linear algebra and multi-dimensional
array library for Haskell.

Automatic differentiation is a technique to numerically
evaluate the derivative of a function, which is believed to be
very powerful when combining the back-propagation algo-
rithm. Interested readers may refer to AutoDiff [Paszke et
al., ], DDSP (differentiable digital signal processing) [Engel
et al., 2020], etc.

2.3 Layer 3: Tensor Data Structure

Tensor is the most popular data structure in machine learn-
ing, especially in deep learning. For instance, a) input data:
color image set, video sequence, MRI/fMRI, EEG, gene ex-
pression, traffic data, social network data, knowledge graph;
b) High-order statistical information, high-order moment, co-
variance, cumulant, etc.; c) model parameters: fully con-
nected layer, convolutional layer, multi-task weight param-
eters, multi-modal feature fusion, and etc.; and d) function:
probability mass function of multiple discrete variables.

In the past, a unified notation set for tensors [Kolda and
Bader, 2009] and tensor networks [Cichocki et al., 2016] suc-
cessfully helps the adoption of tensor tools and the develop-
ment of tensor network libraries in machine learning.

From a machine learning perspective, an N -th order ten-
sor is a container that can house N -dimensional data and
associates with linear/multi-linear operations. A scalar is 0-
dimensional, a vector has a single dimension (1D), a matrix
has two dimensions (2D), and a higher-order tensor has more
than two dimensions.

From a spectral (or transform) perspective, tubal-scalars
[Kilmer and Martin, 2011][Kilmer et al., 2013][Liu and
Wang, 2017] are vectors with the multiplication operation
defined according to the convolution theorem. Considering
a graph transform, one can have graph-tensors [Malik et al.,
2019] or connected matrices [Sun et al., 2018], and graph
tensor neural networks [Liu and Zhu, 2020].

2.4 Layer 4: Tensor Decompositions and Tensor
Networks

Many practically useful and efficient tensor models are built
upon tensor decompositions and tensor networks.

Tensor Decompositions: Canonical Polyadic (CP) tensor
decomposition, Tucker tensor decomposition, TT [Oseledets,
2011] or TR [Zhao et al., 2016] tensor decomposition, HT,
tSVD, reshuffling TD. Sparse tensor decomposition and non-
negative tensor decompositions are also developed as exten-
sions of CP, Tucker, TT, TR and HT.

The uniqueness of CP tensor decompositions [Cichocki et
al., 2015] indicates that multilinear algebra may have theo-
retical advantages over bilinear and linear algebra.

Other important applications includes tensor completion
[Song et al., 2019; Liu et al., 2019]. tensor time series
[Rogers et al., 2013; Lu et al., 2018], spectral learning on
matrix/tensor [Janzamin et al., 2019], and data privacy [Kong
et al., 2019; Fu et al., 2020; Feng et al., 2020].

Tensor Networks: TNs show advantages mostly in space
complexity reduction and computation efficiency. Tensor
Networks have been employed to a) large-scale optimiza-
tion problems, large-scale eigenvalue problem, large-scale
SVD, large-scale matrix pseudo-inverse; b) model compres-
sion in DNN, including fully connected layer and convolu-
tional layer; c) expressive power analysis of DNN,

Many complicated TN models including MERA, PEPS,
and etc, which have not applied to machine learning but may
have potential advantages in particular problems.



2.5 Layer 5: Tensor Libraries & Programming
IDE

Widely used tensor IDEs are TensorFlow [Abadi et al., 2016],
PyTorch [Paszke et al., 2019], TensorRT [Vanholder, 2016],
Theano, Keras, Apache MXNet, Caffe2, CNTK, PaddlePad-
dle, MindSpore, MegEngine, etc.

Other libraries include TensorLayer [Dong et al., ],
TensorLy [Kossaifi et al., 2019]; TensorNetwork Library
[Roberts et al., 2019]; Tensor decomposition in TensorFlow
[Novikov et al., 2020], sparse tensor computing [Phipps
and Kolda, 2019], and differentiating tensor networks library
[Liao et al., 2019a]

For quantum physics, iTensor (Intelligent Tensor) 1 pro-
vides a collection of optimized tensor network algorithms.

2.6 Layer 6: Machine Learning Models
There are active research on designing tensor-based machine
learning models. We describe a few approaches in the follow-
ing.

TensorFace [Vasilescu and Terzopoulos, 2002][Vasilescu
and Terzopoulos, 2003] presents facial image ensembles,
where the relevant factors include different faces, expres-
sions, viewpoints, and illuminations. TensorMask [Chen et
al., 2019] is proposed for dense object segmentation.

Tensor regression [Kossaifi et al., 2017] extends the con-
ventional regression models to tensor representation, while
tensor mixture model [Sharir et al., 2016] proposed a proba-
bilistic graphic model in tensor form.

AutoEncoder can be extended to tensor form, such as ten-
sor sparse coding [Jiang et al., 2018].

The generative adversarial network framework is extended
to tensor GAN [Liu and Wang, 2020] with application to real-
time indoor localization for smartphones.

In the model-based direction, tensor neural networks are
proposed by unfolding tensor algorithms into deep neural net-
works, e.g., [Ma et al., 2019][Han et al., 2020] design fast de-
coders for snapshot compressive imaging cameras, [Liu and
Zhu, 2020] considered recovery of nodes’ data matrices, and
[Zhang et al., 2020b] investigated the video synthesis prob-
lem.

2.7 Layer 7: Applications and Products
Many products embracing AI is enjoying a booming mar-
ket, penetrating our daily lives: from smartphones to self-
driving cars and robotics, search engines, typing assistants
(auto-completion), to healthcare services.

Compressing and optimizing neural networks for inference
at mobile devices: (i) TVM (tensor virtual machine) [Chen et
al., 2018]; (ii) the Tensor Algebra Compiler (taco) is a C++ li-
brary that computes tensor algebra expressions on sparse and
dense tensors. It uses novel compiler techniques to get per-
formance competitive with hand-optimized kernels in widely
used libraries for both sparse tensor algebra and sparse linear
algebra.

AutoML and neural architecture search (NAS) are
promising, where the training and inference are performed

1iTensor: https://itensor.org/index.html

at cloud servers. Many applications are now successfully de-
ployed, including speech recognition, visual object recogni-
tion, object detection; others: drug discovery and genomics.
Note that health-care is one of the hottest trends, while agri-
culture applications may have broad social impacts, including
automatic quality check, mineral delivery optimization in hy-
droponics. Disaster recovery is also a critical application.

Big data analysis [Sidiropoulos et al., 2017] for image,
video; sensory data processing; EEG brain data; finance, ge-
netics, etc.

AI is now being applied massively in entertainment indus-
try, such as chess and poker, medias (e.g. Netflix), music
industry (IBM Watson), and online games, etc.

Other AI products that benefits tensor network algorithms
are listed as follows:

• reCAPTCHA is a CAPTCHA-like system designed to
establish that a computer user is human.

• SIRI is one of many voice assitants available today.

• Gmail recently introduced autocomplet tools.

• Plagiarism checking by searching for matches in billions
of documents.

• FaceID is a feature recently intoduced by Apple for au-
thentication on iPhone.

• Recommendation systems in Amazon and Alibaba
Taobao that suggests suers other products based on their
preferences and click history.

• Facebook face detection and tagging is a services of
Facebook which automatically detects faces in images
and tags people from the user friendship set.

3 Challenges and Innovations
3.1 Challenges
The “4V+P” challenge of big data: IBM data scientists break
big data into four dimensions [Data and Hub, 2013]: volume
for scale of data, variety for different forms of data, velocity
for analysis streaming data, and veracity for uncertainty of
data. We would like to advocate the privacy-preserving re-
quirement as a plus aspect of tensor learning algorithms. Fur-
thermore, the data acquisition process is expensive in terms
of either time or budget.

The C3-challenges of machine learning algorithms are the
intertwined computing, caching and communication:

• Computing: Training a model requires substantial
amount of time, which in turn slows down the develop-
ment. How do we speed up machine learning by 100×?
Real-time operations requires fast inference, e.g., cuTen-
sor in NVIDIA CUDA.

• Caching: How to support Billion/Trillion-scale tensor
computing? How to compress neural network for mobile
platforms?

• Communication: the bandwidth between CPU and GPU,
the link capacity of data centers, the communication be-
tween cloud and edge servers.

https://itensor.org/index.html


Quantitatively characterizing the tradeoff between
model compression and performance: how to select ten-
sor network models for different neural networks? How to
tune the hyperparameters in the tensor network model?

Trustworthy AI: Explainability, interpretability, and un-
derstandable. Interpretability is about the extent to which
a cause and effect can be observed within a system. Ex-
plainability (for decision making), meanwhile, is the extent
to which the internal mechanics of a machine or deep learn-
ing system can be explained in human terms.

Understanding neural-intelligence: a two-layer feedfor-
ward network [Janzamin et al., 2015] is analyzed using CP
tensor decomposition and such a network is believed to learn
a mapping between data distribution priors and labels. On
the other hand, an elementary function of neural net’s intelli-
gence is to recognize symmetry structures in the data [Shang
and Liu, 2019]: The glove for the left hand is able to fit the
right hand if we turn it inside out like placing an imaginary
mirror near the opening. Analogously, neural networks play
a similar role as a glove when dealing with inputs of sym-
metry structures. The classic Kruskal uniqueness theorem is
exploited to provide a sufficient condition for the situations
where such a generalization capability will hold.

Tensor networks provide a rigorous approach to investigate
Why deep is good? Nadav [Cohen et al., 2016] considered
sum-product networks and CNN with ReLU activation func-
tions [Cohen and Shashua, 2016]. Khrulkowv [Khrulkov et
al., 2018][Khrulkov et al., 2019] took a similar approach to
analyze RNNs.

Robustness of Machine Learning Models: deep adver-
sarial learning; The notion of differential privacy is believed
to be very power to construct ensemble methods that fuse sub-
networks into a more robust one [Li et al., 2019].

3.2 Innovations
One recent trend regarding both AI software and hardware is
to consider inference and training as two separate different
phases with different computational approaches. It is becom-
ing standard to develop specific chips for training and specific
chips for inference.

Cross-layer Codesign. High performance tensor learning
operations by exploiting the massive parallelisms are impor-
tant for both training and inference: 1). Tensor decompo-
sitions on GPUs/FPGA such as cuTensor library [Zhang et
al., 2019][Liu et al., 2020][Hong et al., 2020][Huang et al.,
2020] and swTensor [Zhong et al., 2019]; 2). Tensor comple-
tion [Zhang et al., 2020a].

Federated learning [Kong et al., 2019] or Privacy-
preserving tensor algorithms; homomorphic encryption
methods for tensor decompositions.

Quantum Machine Learning [Levine et al., 2018]: ten-
sor networks provide powerful simulations of quantum ma-
chine learning algorithms on classical computers, which may
promise quantum advantages, such as potentially exponential
speedups in training, quadratic speedup in convergence, etc.

Tensor network learning vs deep learning: TN has the
power to express functions, will tensor network learning be
used as a general machine learning model like deep learning?

4 Conclusion
Tensor and tensor networks are envisioned to have great po-
tentials to promote the development and deployment of ma-
chine learning technologies. In this paper, we have proposed
a seven-layer architecture to characterize the role of tensor
and tensor networks in machine learning, point out current
challenges and discuss the development trends. Such a lay-
ered architecture resembles an hourglass. As a cornerstone
data structure, tensor and tensor networks lie at the waist of
the hourglass, while the lower and upper layers tend to see
frequent innovations. We expect tensor and tensor networks
continue to serve as a transformer for machine learning in-
novations, an amplifier for computational intelligence, and a
propeller for AI industrialization.

The interplay between tensor networks and machine learn-
ing algorithms is rich. Indeed, this interplay is based not just
on numerical methods but on the equivalence of tensor net-
works to various arithmetic circuits, rapidly developing al-
gorithms from the mathematics and physics communities for
optimizing and transforming tensor networks, and connec-
tions to low-rank methods for learning. A merger of tensor
network algorithms with state-of-the-art approaches in deep
learning is now taking place. A new community is forming,
which this workshop aims to foster.
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